浮运沉管施工(水下抛石加固)
利用TAM-AIR热活性微量热仪测定了掺不同减水剂水泥水化过程的水化放热曲线,并用Db10小波对放热曲线进行分析.结果表明:掺新型聚羧酸减水剂(SPC)水泥的水化曲线放热峰比掺萘系减水剂(NSF)和不掺减水剂的水泥分别滞后了171.3,235.9 min.对各放热曲线进行分解与重构发现,掺SPC试样的各近似系数比掺NSF试样和空白样小,重构得到的信号误差大,表明掺SPC比掺NSF对水泥水化的影响大.减水剂可有效延缓水化放热峰出现,掺SPC水泥水化放热过程比掺NSF水泥更加温和,有利于后期水泥强度的发展.
沉管法施工技术,是指在干船坞内或大型驳船上先预制钢筋混凝士管段或全钢管段,将其两头密封,然后浮运到的水域,再进水沉埋到设计位置固定,建成需要的过江管道或大型水下空间
[1] 在干船坞内或大型驳船上先预制钢筋混凝士管段或全钢管段,将其两头密封,然后浮运到的水域,再进水沉埋到设计位置固定,建成需要的过江管道或大型水下空间。珠江隧道工程为我国大型沉管工程开创了成功的先例。
沉管法施工流程
浮运沉管施工(水下抛石加固)
为了确定等效体积单元(RVE)模型中砖砌体材料的破坏准则,选取3种组砌方式、2种灰缝厚度和10种压应力水平,通过特别设计的夹具对144个砖砌体试件进行了压剪破坏试验.综合考虑试验结果和数值模拟对破坏面光滑性的要求,发现Drucker-Prager准则可用于描述砖砌体材料的压剪破坏,其参数可由试验结果进行标定.将标定后的Drucker-Prager准则应用于RVE模型,对砖砌体试件抗压试验和砖砌体墙伪静力试验进行了数值模拟,模拟结果与试验结果相符.研究手段和成果可为砖砌体材料或结构的数值分析提供参考.
(1)沉管法实质:在隧址附近修建的临时干坞内(或船厂船台)预制管段,用临时隔墙封闭,然后浮运到隧址规定位置,此时已于隧址处预先挖好水底基槽。
待管段定位后灌水压载下沉到设计位置,将此管段与相邻管段水下连接,经基础处理并后回填覆土即成为水底隧道沉管法隧道组成:一般由敞开段、暗埋段、岸边竖井与沉埋段等组成。
沉埋段两端通常设置竖井作为起讫点,竖井起到通风、供电、排水和监控等作用。根据两岸地形与地质条件,也可将沉埋段与暗埋段直接相接而不设竖井。。)沉管法隧道组成:一般由敞开段、暗埋段、岸边竖井与沉埋段等组成。沉埋段两端通常设置竖井作为起讫点,竖井起到通风、供电、排水和监控等作用。
通过压汞法得到了水泥基多孔材料的微观孔隙分布数据,在此基础上采用a,b,c三种方法计算了该材料相应的分维数.结果表明:用c法得到的颗粒分布分维数为有效,其相关系数为0.97,说明水泥基多孔材料微观孔隙具有良好的分形特性;基于微观孔隙分布密度函数,提出了一种能表征微观孔隙分布特性的累计微观孔隙率模型,结合分维数,利用该模型预测了水泥基多孔材料的累计微观孔隙率,预测值与实测值吻合较好.
根据两岸地形与地质条件,也可将沉埋段与暗埋段直接相接而不设竖井。圆形管段(船台型管段)内轮廓为圆形,外轮廓有圆形、八角形和花篮形。
通过机理分析及试验验证,提出了一种能提高再生骨料混凝土性能的预拌浓浆法,并分别采用该方法和传统拌制工艺,对比研究了再生骨料混凝土28d抗压强度的统计分布规律.结果表明:与传统拌制工艺相比,预拌浓浆法能使再生骨料混凝土28d抗压强度提高8%~19%;同时,预拌浓浆法能够在不改变配合比的条件下,使再生骨料混凝土抗冻性明显改善.
- 上一篇:沉管施工水底管道铺设(市政管道封堵)
- 下一篇:水下沉管浮运沉管施工(水下清理杂物)