水下安装给排水管道(沉管施工)
(
通过压汞法得到了水泥基多孔材料的微观孔隙分布数据,在此基础上采用a,b,c三种方法计算了该材料相应的分维数.结果表明:用c法得到的颗粒分布分维数为有效,其相关系数为0.97,说明水泥基多孔材料微观孔隙具有良好的分形特性;基于微观孔隙分布密度函数,提出了一种能表征微观孔隙分布特性的累计微观孔隙率模型,结合分维数,利用该模型预测了水泥基多孔材料的累计微观孔隙率,预测值与实测值吻合较好.
1)对地质水文条件适应能力强(施工较简单、地基荷载较小);
(2)可浅埋,与两岸道路衔接容易(无需长引道,线形较好);
(3)防水性能好(接头少漏水几率降低,水力压接滴水不漏);
(4)施工工期短(管段预制与基槽开挖平行,浮运沉放较快);
(5)造价低(水下挖土与管段制作成本较低,短于盾构隧道);
(6)施工条件好(水下作业极少);
(7)可做成大断面多车道结构(盾构隧道一般为两车道)。
水下安装给排水管道(沉管施工)
综合分析了影响浮法玻璃破裂的各种因素,利用封闭腔室玻璃破裂模拟试验装置进行了7因素2水平正交试验.结果表明:玻璃厚度、玻璃边缘平整度、辐射源升温速率对玻璃的破裂影响很大,玻璃平面尺寸、遮蔽表面宽度影响次之,而框架内填充物(石膏粉)厚度和辐射源距离影响较小.温差和热应力的中位数分别为129.2℃,69.13MPa.
(1)管段制作砼工艺要求严格,需保证干舷与抗浮系数;
(2)车道较多时,需增加沉管隧道高度。导致压载混凝土量、浚挖土方量与沉管隧道引道结构工程量增加。
干坞修筑与管段预制
干坞修筑
1、干坞位置选择
(1)邻近隧址,具备浮运条件,交通便利。
(2)有浮存系泊多节管段的水域;
(3)场地土具备一定的承载力,便于干坞围挡与防渗工程;
(4)征地拆迁费用较低,具有重复开发利用价值。
2、干坞规模2、干坞规模
(1)一次预制管段干坞(仅放水一次,不需闸门,坞首为土或钢板桩围堰。规模较大占地较多,适于工程量小土地价格较低、坞址地质较差的工程);
以吸附-凝聚理论为基础,利用氮吸附法(BET)对早期磷铝酸盐水泥(PAC)浆体的孔结构进行了测试研究,通过不同水灰比、不同龄期硬化PAC浆体的等温吸附曲线及吸附回线的线型,分析了其氮吸附特点,并根据孔比表面积和孔分布等孔结构参数,对其早期微观结构进行了分析.
(2)分批预制管段干坞(规模小、占地少、造价低、重复使用率高。闸门式坞门造价高、等待时间长不利先沉管段稳定、基槽回淤很难处理、重复灌排致边坡稳定性与坞底透水性差、临时工程费用增加)。
3、干坞构造
干坞由坞墙、坞底、坞首、坞门、排水系统与车道组成:
(1)坞墙:坡率1:2的自然土坡,可用喷射砼防渗墙或钢板桩;
(2)坞底:承载力应大于100kPa。浮起时富余深度1.0m;
(3)坞首及坞门:一次预制只设坞首,分批预制应设双排钢板桩坞首与坞门(闸门或浮动钢筋砼沉箱);
(4)排水系统:井点降水;坞底明沟、盲沟与集水井泵排;堤外截、排水沟;
(5)车道。
采用动态剪切流变仪对基质沥青和SBS改性沥青进行流变测试评价,利用应力扫描方式评价了这2类沥青在60℃下的屈服特性和线性黏弹区间,利用频率扫描考察了其结构松弛特性.结果表明:基质沥青和SBS改性沥青具有明显不同的流变特点,前者在60℃下存在明显的屈服特征和线性黏弹区间,而后者只呈现出整体的屈服行为,并不存在明显的线性弹区间;由于高弹性SBS改性剂的引入,使改性沥青结构松弛时间变小,从而使其可回复能力远高于基质沥青.